If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x=210
We move all terms to the left:
3x^2+5x-(210)=0
a = 3; b = 5; c = -210;
Δ = b2-4ac
Δ = 52-4·3·(-210)
Δ = 2545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{2545}}{2*3}=\frac{-5-\sqrt{2545}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{2545}}{2*3}=\frac{-5+\sqrt{2545}}{6} $
| x=132+(-0.84)(18.9) | | -8x-20=-124 | | 10v/4=10 | | 3/4y+1/4=1/2 | | -8x-16x=-136 | | x=132+0.84(18.9) | | 8x+12=-124 | | (y+3)^1/5=-1 | | -5n-2(6n+4)=-93 | | 14m+4=2(2m+14) | | 6x^2-196x=40 | | 8r/4=10 | | 19x-10=12x-31 | | 7+3v=-5+7v | | -6x-8x=-8x+12 | | 105=87+y/4 | | T^2+5t+66=0 | | 13n-2=-8 | | 6n+3=-3+5n | | 4/9=-5/6x | | 2(x^2-25)=3x(25-x^2) | | 1/8x=1/3x-10 | | 3(p-5)-4=17 | | -5-2m=7 | | U+e=L | | 4.7x=2.5x+8 | | 12-a=15 | | 0.1(x+250)=3,000 | | 6/10x=8x/12 | | 4/x-3=6x | | x=5.4 | | z+1/2=-3/5 |